Assistive Human-Machine Interfaces via Artificial Neural Networks

نویسندگان

  • Wei Tech Ang
  • Cameron N. Riviere
چکیده

This paper reports the study and results of modeling and online compensating of movement disorder stemming from multiple sclerosis (MS) via artificial neural networks. We trained and tested a cascade-correlation neural network with Kalman filtering on data collected from 11 subjects with MS. The test subjects use headcontrolled mouse emulators to move a cursor to a series of random targets on screen. Simulated real-time testing of the trained neural networks shows that the networks successfully make the cursor trajectories of all the 11 subjects less chaotic, and hence more controllable. The neural networks also reduce the time needed to reach the targets by an average of 31.8%. The neural network approach can be easily applied to other human-machine interfaces such as computer mice and joysticks, or powered wheelchairs. This technique is also applicable to movement disorders resulting from certain geriatric diseases such as Parkinson’s disease and essential tremor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assistive Human-Machine Interfaces via Artificial Neural Netwoks

This paper reports the study and results of modeling and online compensating of movement disorder stemming from multiple sclerosis (MS) via artificial neural networks. We trained and tested a cascade-correlation neural network with Kalman filtering on data collected from 11 subjects with MS. The test subjects use headcontrolled mouse emulators to move a cursor to a series of random targets on s...

متن کامل

Estimation of the Ampere Consumption of Dimension Stone Sawing Machine Using of Artificial Neural Networks

Nowadays, estimating the ampere consumption and achieve to the optimum condition from the perspective of energy consumption is one of the most important steps to reduce the production costs. In this research it is tried to develop an accurate model for estimating the ampere consumption by using the artificial neural networks (ANN).In the first step, experimental studies were carried out on 7 ca...

متن کامل

Prediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine

Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...

متن کامل

Integration of Color Features and Artificial Neural Networks for In-field Recognition of Saffron Flower

ABSTRACT-Manual harvesting of saffron as a laborious and exhausting job; it not only raises production costs, but also reduces the quality due to contaminations. Saffron quality could be enhanced if automated harvesting is substituted. As the main step towards designing a saffron harvester robot, an appropriate algorithm was developed in this study based on image processing techniques to recogn...

متن کامل

Prediction of the pharmaceutical solubility in water and organic solvents via different soft computing models

Solubility data of solid in aqueous and different organic solvents are very important physicochemical properties considered in the design of the industrial processes and the theoretical studies. In this study, experimental solubility data of 666 pharmaceutical compounds in water and 712 pharmaceutical compounds in organic solvents were collected from different sources. Three different artificia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002